AI Case Study

MIT researchers develop system that can identify individuals with 96% accuracy for smart homes improvement

Industry

Public And Social Sector

Education And Academia

Project Overview

"MIT researchers have built a system that takes a step toward fully automated smart home by identifying occupants, even when they’re not carrying mobile devices. The system, called Duet, uses reflected wireless signals to localize individuals. But it also incorporates algorithms that ping nearby mobile devices to predict the individuals’ identities, based on who last used the device and their predicted movement trajectory. It also uses logic to figure out who’s who, even in signal-denied areas.

“Smart homes are still based on explicit input from apps or telling Alexa to do something. Ideally, we want homes to be more reactive to what we do, to adapt to us,” says Deepak Vasisht, a PhD student in MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and lead author on a paper describing the system that was presented at last week’s Ubicomp conference. “If you enable location awareness and identification awareness for smart homes, you could do this automatically. Your home knows it’s you walking, and where you’re walking, and it can update itself.”

Experiments done in a two-bedroom apartment with four people and an office with nine people, over two weeks, showed the system can identify individuals with 96 percent and 94 percent accuracy, respectively, including when people weren’t carrying their smartphones or were in blocked areas.

But the system isn’t just novelty. Duet could potentially be used to recognize intruders or ensure visitors don’t enter private areas of your home. Moreover, Vasisht says, the system could capture behavioral-analytics insights for health care applications. Someone suffering from depression, for instance, may move around more or less, depending on how they’re feeling on any given day. Such information, collected over time, could be valuable for monitoring and treatment.

“In behavioral studies, you care about how people are moving over time and how people are behaving,” Vasisht says. “All those questions can be answered by getting information on people’s locations and how they’re moving.”

The researchers envision that their system would be used with explicit consent from anyone who would be identified and tracked with Duet. If needed, they could also develop an app for users to grant or revoke Duet’s access to their location information at any time, Vasisht adds."

Reported Results

"Experiments done in a two-bedroom apartment with four people and an office with nine people, over two weeks, showed the system can identify individuals with 96 percent and 94 percent accuracy, respectively, including when people weren’t carrying their smartphones or were in blocked areas."

Technology

Function

R And D

Core Research And Development

Background

"Developing automated systems that track occupants and self-adapt to their preferences is a major next step for the future of smart homes. When you walk into a room, for instance, a system could set to your preferred temperature. Or when you sit on the couch, a system could instantly flick the television to your favorite channel.

But enabling a home system to recognize occupants as they move around the house is a more complex problem. Recently, systems have been built that localize humans by measuring the reflections of wireless signals off their bodies. But these systems can’t identify the individuals. Other systems can identify people, but only if they’re always carrying their mobile devices. Both systems also rely on tracking signals that could be weak or get blocked by various structures."

Benefits

Data