top of page

AI Case Study

NYU researchers detected lymphedema with 93.8% accuracy using neural networks

Researchers based at New York University recently reported that machine learning algorithms could currently identify lymphedema, which is a known side effect commonly associated with breast cancer treatment, with an impressive accuracy rate of 93.8%. This was based on patient reported symptom data and clinical data.

Industry

Public And Social Sector

Education And Academia

Project Overview

From Algorithm-X Lab: "Fu and his team at the New York University focused their attention towards machine learning as the technology is popular for processing large volumes of data points that are autonomous from one another, as it is with lymphedema symptoms. The groundbreaking study involved 355 women who had previously gone through breast cancer treatment. The study involved the gathering of both clinical and demographic information prior to asking patients if they were going through any of the known 26 lymphedema symptoms. After collecting the desired data from the patients, the researchers then embarked on an exercise to input the symptom information into five distinct machine learning algorithms. The algorithms comprised two Decision Tree models including a gradient improving model as well as a support vector machine and artificial neural network. In addition, the researchers said that all the five modalities detected lymphedema more accurately compared to the current standard statistical technique."

Reported Results

As reported in the MHleath research paper, the "well-trained ANN classifier using real-time symptom report can provide highly accurate detection of lymphedema. Such detection accuracy is significantly higher than that achievable by current and often used clinical methods such as bio-impedance analysis. Use of a well-trained classification algorithm to detect lymphedema based on symptom features is a highly promising tool that may improve lymphedema outcomes." Algorithm-X Lab reports that "the artificial neural network model proved to be the most successful one out of the two approaches, with a remarkable accuracy rate of 93.8%."

Technology

5 different machine learning models were evaluated, including:

* Decision Tree using C4.5 algorithm
* Decision Tree using C5.0 algorithm
* Gradient boosting model
* Artificial neural network
* Support vector machine.

Function

R And D

Core Research And Development

Background

Algorithm-X Lab reports: "According to study author Mei R. FU, RN, PhD, and his colleagues, Lymphedema cannot be treated. The limited mobility, burning sensation, aches and swelling heaviness make the condition an unattractive candidate for treatment. As such, early diagnosis and intervention measures are the best and only ways that physicians can prevent the condition from deteriorating and minimize symptoms. Fu, NYU Rory Meyers College of Nursing’s associate professor of nursing, revealed in the release that clinicians often diagnose or detect lymphedema based on their observation of swelling. Nonetheless, by the time the swelling can be measured or observed, lymphedema would have occurred for some time, which may translate to poor clinical results. Fu and other co-authors also claimed in the release that lymphedema could take place after cancer surgery or even as late as two decades after the exercise. However, they added that only 41% of breast cancer patients experience the condition within ten years of treatment."

Benefits

Data

Demographic, clinical and survey responses from 355 women who had previously undergone treatment for breast cancer.

bottom of page